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Abstract : This paper proposes an extension of the traditional active disk 
concept by applying it to parallel file systems deployed in modern clusters.  
Utilizing processing power of the disk controller CPU for processing of 
data stored on the disk has been proposed in the previous decade. We have 
extended and deployed this idea in context of storage servers of a parallel 
file system, where substantial performance benefits can be realized by 
eliminating the overhead of data movement across the network. In 
particular, the proposed approach has been implemented and tested in 
context of Lustre parallel file system used in production Linux clusters at 
PNNL. Furthermore, our approach allows active storage application code 
to take advantage of modern multipurpose operating Linux rather than a 
restricted custom OS used in the previous work. Initial  experience with 
processing very large volume of bioinformatics data validate our approach 
and demonstrate the potential value of the proposed concept. 

1. Introduction 

The volume of data has grown exponentially, both in technical computing as well 
as in the commercial sector.  This data explosion has in turn driven the rapid evolution of 
diverse storage technologies to address needs of different market segments.  It is now 
possible to store terabytes of data with just a few disk drives.  Hitachi is shipping 400 GB 
disks, and will soon release 500GB disks.  The software and hardware technology to 
aggregate and support large file systems also been advancing in the last decade.  
Proprietary parallel file systems, such as IBM’s GPFS [1], Panasas ActiveScale File 
System [2], SGI’s CXFS [3] and many others provide this capability.  There are also a 
number of open source Parallel file systems such as PVFS [4], RedHat (Sistina) GFS [5], 
and Lustre [6].   

As the quantity of data has increased, the need for the ability to process and 
analyze the data has increased as well. Linux clusters and large Symmetric Multiprocessor 



(SMP) computers have been developed to handle the computational loads of modern 
applications. However, for many data intensive applications, the storage and analysis of 
data remains as a serious bottleneck. We believe that unexplored alternatives exist to 
address the problem on the storage side, in particular the parallel file system side, and 
have been pursuing one of them in the current effort. Parallel file systems use one or more 
storage servers of some type. Because of the fundamental differences between the 
historical rates of improvement for the different hardware components in particular CPU 
and disk, the storage servers have underused processing power.  In many cases, the 
parallel file system server nodes are very similar or identical to the compute nodes 
deployed in a cluster, and in many cases offer Giga-op/s of processing power.   

The original research efforts on active storage and active disks [7, 8, 9] were 
based on a premise that modern storage architectures have progressed to a point that there 
is the real possibility of utilizing that unused processing power of the drive controller 
itself.  However, for numerous reasons commodity disk vendors have not offered the 
required software support and interfaces to make active disks widely used. Our current 
project is developing active storage processing capability in parallel file systems. In this 
approach, active storage is a system that takes advantage of  the underutilized CPU time 
on file system servers to process, not simply store, data. Processing data directly on the 
storage units can give a dramatic performance increase, by avoiding redundant transfers 
the data over networks, interconnects, or storage busses. The approach we have been 
currently pursuing uses these concepts by modifying the Lustre source base to enable the 
Active Storage concept.  The Lustre file system is deployed at numerous sites running 
Linux clusters including national laboratories such as Lawrence Livermore National 
Laboratory, National Center for Supercomputing Applications, and Pacific Northwest 
National Laboratory.   

Lustre was designed early on to be a modular, layered architecture.  This makes 
it possible to extend the architecture by adding additional layers.  For example if module 
A is normally attached for communication to Layer B (A�B), one could attach a new 
module C to module B, and then attach module A to module C (A�C�B).  The 
additional layer could implement almost anything at this point, a simple pass-through 
inspection layer, a security layer, or a layer which makes large changes to the behavior of 
the file system. We developed a prototype implementation of active storage in parallel file 
system by defining and adding an appropriate active storage layer to the Lustre file 
system. Our early experiences involving bioinformatics applications have already shown 
viability of this approach, which can perform processing on large data streams without 
moving it across the network. 

The paper is organized as follows. Section 2 provides an overview of Lustre. 
Section 3 describes the proposed approach and its implementation in the context of Lustre. 
Deployment and application experience are presented in Section 4. The paper is 
concluded in Section 5. 



2. Lustre Overview 

The Lustre file system is an open source file system, currently development is led by 
Cluster File Systems, Inc., with funding support from the U.S. Department of Energy and 
other industry partners.  Lustre is a highly parallel system, utilizing multiple storage 

servers, a meta-data server, and a variety of interconnects to serve thousands of clients at 
very high throughput rates.  Among the supported interconnects are Quadrics, Infiniband, 
and Ethernet.   

The basic structure of Luster is shown in Figure 1. Lustre Meta-Data Servers 
(MDS) handle the data associated with all files in the system, including the directory tree, 
filenames, and file permissions.  System wide file location information is also stored on 
the MDS; this information is needed for the client nodes to perform I/O operations on the 
files. Lustre Object Storage Servers (OSS) are responsible for serving data.  They support 
a simple object based protocol to clients so that data can be moved quickly from multiple 
OSS nodes to client nodes.  High throughput numbers are achievable by using many OSS 
nodes in parallel.  The Lustre file system is very scalable.  The addition of more OSS 
nodes can improve the performance, and size of the system.  Since true Object Based 
Disks (OBD) are not readily available in hardware, the Lustre code base places a ‘filter’ 
layer over the Linux ext3 journal file system, which provides a robust failure recovery 
mechanism. 

Lustre client nodes communicate with the MDS and OSS nodes, and present a 
single coherent file system to the user.  The client communicates with the MDS server in 
order to perform the needed creation, update, or deletion of files and directories.  Once 
files are in place, the client sends and receives portions of files directly from the OSS 

 
 
 
 
 
 
 

 

 

 

Fig. 1: Basic Lustre Components 
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nodes.  Files can be striped across many OSS nodes so that successive blocks of a single 
file are stored on many servers. 

Lustre uses a variant of the Portals networking layer that was 
originally developed at Sandia National Laboratories [10].  Additions were 
made to the base Portals source code to facilitate extensions needed by the Lustre system.  
One of these changes allows portals traffic to ‘route’ between multiple interconnect types.  
This infrastructure provides the Network Abstraction Layer needed to facilitate Lustre 
traffic over the various interconnects.  This also allows for additional interconnect types to 
be included easily without major modifications to the Lustre code base.   

Lustre also employs a Distributed Lock Manager (LDLM) that runs on all the 
nodes, that is based off work done in the VAX Cluster Distributed Lock Manager [6]. 
This lock manager handles file extent reservations to specific nodes.  It helps ensure 
consistent data semantics, so that multiple clients can be modifying the same file 
simultaneously without sacrificing data integrity.  

3. Technical Approach 

Our approach exploits the modular structure of Lustre. The classic Lustre client 
layers are shown in Figure 2.  An application sees a file system that supports POSIX 
semantics for reading and writing files.  Once the kernel system calls are made the kernel 
passes control to the ‘llite’ layer.    This mostly translates the basic Virtual File System 
(VFS) calls into work orders for the rest of the system.  It has direct communication with 
the Meta Data Client (MDC) modules, and the Logical Object Volume (LOV).  The LOV 
layer is responsible for the dispatching of the data related calls to the set of Object Storage 
Clients (OSC) that are available.  It performs these duties based on striping information 
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Fig. 2: Lustre Client Modules 



obtained from the Meta Data Server (MDS).  The OSC layer packages up the requests and 
sends them to an OSS node serving the Object Storage Target (OST) that is specified, 
over the Portals Network Abstraction Layer (NAL).   

The Object Storage Servers (OSS) serve a set of OST’s, these targets relate 
directly to the underlying disk file systems that are available, see Figure 3.  The OST layer 
receives the requests from the NAL, and feeds the requests down to the OBD filter layer.  
This OBD filter wraps the Linux ext3 file system so that it looks like an Object Based 
Disk. 

The Active Storage (AS) layer is attached between the OST layer and the OBD 
filter layer.  Once in place the module acts like a pass-though module, until such time as 
an active storage task is requested.  To initiate the active storage process a client 
application will create empty output files, and then send a special command to the file 
system specifying the Object ID’s of all input and output files, along with information 
relating to the type of processing needed and parameters for this processing.   

Figure 4 shows the processing that takes place as the file is written.  
For example, the client would create two empty files A and B, and then 
sends an AS linking command.  Once this takes place a device is allocated 
to an AS process.  The active storage device module interfaces with a 
processing component (PC) on the OSS.  The processing component is implemented as a 
standard Linux process that runs on behalf of the user.  This process is spawned at the 
time when the link  made.  A small helper process is started that sets up the correct 
interface, and then starts the PC.  Once the processing component completes is work and 
exits,  the helper process cleans up the interface files and then terminates. 
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Fig. 3: Lustre OSS Modules 



Once the files have been created, linked, and the processing component is 
initialized, the client will start writing data to file A, using normal file API calls.  The 
active storage layer sees this data, and passes the data directly to the OBD filter layer.  It 
also makes a copy, which is sent to the active storage device layer.  When the processing 
component calls read() operation on the device interface it will either get the waiting data, 
or will block until a new data block becomes available.  Once the processing component 
has completed its work, any output is written out by calling write() on the AS device 
interface.  The AS device layer receives these writes, and feeds them to the OBD filter 
layer.  These writes will all appear in file B.  Therefore, the original (unprocessed) data 
appears in file A, and the results of the AS processing appear in file B. 

The processing component accesses the input and output files as streams, which 
resembles the approach described in [9].  The simple stream model allowed one buffer of 
the stream to be available at a time.  That work relied on using a custom Disk OS that 
restricts the actions a program can take.  In the active storage approach we are pursuing, 
the processing component has full access to the normal Linux Operating environment, 
which does not restrict it as much as the proposed DiskOS model described in [9].  
Furthermore, for active storage applications many types of processing will become  soon 
available, based on  abstracting input files, output files, and disk-resident files as streams.     

In order to add a new Active Storage Processing Component a user must work 
within a specific framework we provide. First a processing component must be added to 
the database of Processing Components, which also specifies what the arguments to the 
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Fig. 4: Active Storage Modules 



PC will be. When the PC starts it will be created from within a special kernel context, and 
will not have direct access to the standard IO streams. The PC is also given a device file 
that it can read or write to. Any read type streams will be read from this device in a 
packetized form, with a block header describing the data block that will be read next. Data 
written to this device file is then written to the output file. The PC has access to most of 
the Operating System services such as network, and local file systems. 

3.1 Active Storage Processing Patterns 
Many patterns of processing can be supported by the active storage system.  The 

basic file write which results in a raw file and a processed file (1W->2W) was used in the 
example above.   Other types have been conceptualized and are under development, see 
Table 1.  The symbolic description uses W, for writes, R for reads, and numbers, or the # 
sign for more that one data stream.  The left side of the symbolic name specifies input, 
and where it originates.  Inputs can bead read from disk(R) or be copied from a data 
stream being written (W).  Outputs can be to the disk (W) or as a data stream being sent to 
a reading process (R). 

 
Pattern Description 

1W->2W  Data will be written to the original raw file. A new file will be 
created that will receive the data after it has been sent out to a 
processing component.  

1W->1W Data will be processed then written to the original file 

1R->1W Data that was previously stored on the OBD can be re-processed 
into a new file.  

1W->0  Data will be written to the original file, and also passed out to a 
processing component. There is no return path for data, the 
processing component will do 'something' with the data. 

1R->0  Data that was previously stored on the OBD is read and sent to a 
processing component. There is no return path   

1W->#W Data is read from one file and processed, but there may be many 
files that are output from  

#W->1W  There are many inputs from various files being written as outputs 
from the processing component. 

1R->1R  Data is read from a file on disk, sent to a processing component, 
then the output is sent to the reading process. 

Table 1 : Processing patterns for active storage in parallel file system 



4. Deployment and Application Experience 

Our current implementation supports the 1W->2W streaming type.  The 
framework of the AS modules is being extended to support more general input output 
methods.  Once input code is developed to read data directly from the objects on disk, the 

1R-> methods will become available.  Our initial development and testing work around 
active storage used a simple gzip compression processing component. It that was able to 
improve the compression time of a data stream, as the raw data only needed to be sent into 
the file system once.  More recently we began deployment of active storage in context of 
scientific data intensive applications, namely in the area of bioinformatics.  

As part of the StorCloud Challenge of SC’2004 conference, we demonstrated an active 
storage application based a single Lustre file system striped across 40 OSS servers, each 
containing 24 400GB disk drives configured as four six-disk RAID0 sets, for a total of 
four OST's per server. Formatted, this presents itself as a 348TB file system to client 
nodes.  A real-time write speed visualization for display on the conference floor is 
presented in Figure 5. It was based on the NWPerf profiling and visualization tool [11] 
used to collect system profiling data during the experiment. There data was collected at 
two second intervals, and there are 64 intervals shown in Figure 5.  

 
 
Fig. 5: I/O bandwidth profile in the StorCloud experiment across Lustre servers 
collected and visualized using NWPerf 
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The Lustre file system used was based on a beta version of Lustre 1.4, and augmented 
with our active storage module.  The application, running within the active storage 
module, calculated and stored all possible amino acid sequences based on an input mass 
and tolerance observed experimentally at the high-performance Mass Spectrometry 
Facility of the Environmental Molecular Sciences Facility (EMSL) at PNNL. For the 
StorCloud Challenge, a master application running on a single workstation wrote files to 
the Lustre file system containing a target mass and tolerance. The active storage module 
read this information, calculated and stored the resulting protein mass and sequence data 
to a second file within the file system. Since the Active Storage component is running on 
the OSS where the disks physically reside, very little data crossed the network.  

During the challenge period we observed aggregate writes speeds between 
3.5GB/s and 4.2GB/s, as seen in Figure 6.  This rate was sustainable for many hours as 
long as there was processing to be done.  The raw disk arrays are capable of higher write 
speed, 8GB/s. In addition to the time taken to run active storage processing application, 
further investigation using the oprofile tools showed that the bottleneck for this 
application is the user memory to kernel memory data copy call.  Some improvement was 
attained by moving to a different memory copy function that is provided in the kernel.  As 
a part of continuing work on optimizing the active storage module implementation and its 

 
 
 

 
 

 
 
 
 

 
 

Fig. 6: Aggregate bandwidth  in the StorCloud experiment 
 



integration with Luster framework, we planning to directly map the processing component 
pages directly to the file system output routines and bypass this memory copy. 

Since the interconnect in the experiment was a Gigabit network, at these speeds it 
is only possible for a single client to write about 80-90 MB/s.  The application written can 
perform at this level and saturates the network.  Limitations like this make the Active 
Storage approach very attractive since it could 1) eliminate the network bandwidth 
bottleneck and 2) exploit processing power of the servers deployed in the Lustre file 
system. 

5. Conclusions 

The concept of active storage/disks was actively investigated during previous 
decade. The previous work has concentrated primarily on adding processing capabilities 
directly to available disk processors. The active storage approach that we propose is 
targeting parallel file systems deployed in Linux clusters instead in order to reduce or 
even eliminate some data transfers between servers and clients in parallel filesystems 
deployed in Linux clusters. We developed a prototype implementation by defining and 
adding an active storage module to the Lustre file system. Our early experiences involving 
bioinformatics applications have already shown viability of this approach, which can 
perform processing on large data streams without moving it across the network. We are 
extending the active storage module to provide other types of processing and working on 
advancing  technology and framework for active storage processing in Lustre. 
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